
AO T 2 EXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES F/S 12/2
SOUTION APPROACHES FOR NETWORK FLOW PROBLEMS WITH MULTIPLE CRI-ETC(U)
DEC 79 D KLINGMAN, J MOTE N00014-78-C-0222

UNCLASSIFIED CCS-363EmEJIIIIIIIIIE
EEhEE, hE

EEllEElgglEEEE



14.1 112M 112.5
1- . --•11111 - 32

12.2

MICROCOPY RESOLUTION ITSI CHART



00-

CENTER FOR
CYBERNETIC

STUDIES
The 1 niversitvof Texas

Austin, lixa 71]2

DTIC_
MAY 13 WIJ~k

E

OI4STA~~A/

AppoV~ oT public Teo S
ist 'bution Ub'' ~

8O~ 13018



$

*SOLUTION~P ROACHES FORJIETWORK FLO4
PROBLEMS WITH ULTIPLE CRITERIA

by

~~rwinkiingman~
[_. John/4te *

* Professor of Operations Research and Computer Sciences, The University

of Texas at Austin, Department of General Business, BEB 608, Austin,
TX 78712

** Systems Analyst, Analysis, Research, & Computation, Inc., P.O. Box
4067, Austin, TX 78765.

This resear -.mfl -nrA4 - art by the Office of Naval Research
contract no.r }0$l-78-C-9222/ Reproduction in whole or in part is
permitted fo any purpo-9eo the United States Government.

DISTRIBUTION STATEMENT A' Access ion For

Approved for public rele=; BTIS GFA&I
Distributon Unlimited IfC TAB

Unannounced
/ Justification

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director
BEB 203E Distribut en/

The University of Texas at Austin ___1.. Codes
Austin, Texas 78712 .9al2n/Q

(512) 471-1821 . sil al

D . peia



1. INTRODUCTION

The past thirty years have witnessed a marked increase in

the acceptance of mathematical modeling and solution techniques by

both the business and government sectors. This acceptance of the

tools of operations research has been necessitated to some extent by

the ever-increasing complexity in the decision-making environment.

Typical problem areas faced by today's managers can involve hundreds

of decision variables, often with many potential levels for each

decision, hundreds of interacting constraints, and typically a number

of conflicting policies or goals to be obtained. The decision maker

must be able to simultaneously analyze the impact of each potential

decision alternative. Then, in view of the set of goals for the

problem, he must select the "best" decision to implement. To com-

plicate matters even further, many of these problems must be addressed

on a day-to-day basis as new, and often conflicting, information is

provided to the decision maker.

Much of the success of operations research has been due to

its ability to satisfactorily model (i.e., reduce to a "simple" mathe-

matical abstraction) some of the important decision problems faced by

management. Among the most successful fields within the broad cate-

gory of operations research is the field of network flow analysis.

Quite simply, this field deals with those problems that can be modeled
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to some degree as an interacting network of points or nodes and

connecting links or arcs. Pictorially, a node may be used to repre-

sent such physical entities as a factory, a warehouse, or a customer,

and an arc may be used to capture the production at a factory, the

inventory level in a warehouse, or the shipment of a product to aI
customer.

Numerous algorithms have been developed for solving network

flow problems that have a single objective function that is to be

minimized or maximized. These include network specializations of

more general purpose algorithms [ 1 , 4 , 6 ], as well as new algo-

rithms solely designed for special classes of network problems [2

5 , 9 ]. Far less effort has been invested in the development of

algorithms for solving network flow problems that have multiple ob-

jectives or criteria.

There have been a variety of approaches proposed for solving

multiple criteria linear programming problems. The complexities of

these techniques range from the very simple-minded to the highly in-

volved.

Undoubtedly the simplest approach, and probably the one most

practiced, is to solve the problem indeendently for each of the

criteria functions. There is an obvious trade-off for this approach.

On the one hand, since the individual problems are simply single

criterion problems, they can be solved with any of the efficient

algorithms designed for their class. But on the other hand, the de-

cision maker is faced with (possibly) as many "solutions" as there are
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criteria.

Another approach for solving a linear programming problem

with multiple criteria is to form a single surrogate criterion from

the multiple criteria. Here the decision maker must specify exact

weights, or trade-off values, for each of the criterion. Given these

weights, the resulting single criterion problem can be solved with

any of the existing algorithms for its class. Unlike the first ap-

proach, this surrogate criterion approach will produce a single

"solution" to the decision maker. A drawback of this approach is that

the exact weights for each criterion must be pre-specified. Of course,

the decision maker is not restricted to a single choice of weights, but

each such choice can possibly yield a new "solution" to the problem.

A third approach for solving multiple criteria problems is

to incorporate some or all of the criteria into the problem in the

form of constraints. For example, a manufacturing company might have

the following three goals: maximize sales, maximize return on invest-

ment, and minimize employee overtime. One way to solve this problem

is to add a constraint that total sales must exceed one million dollars,

and a constraint that the average worker overtime cannot exceed five

hours per week. The remaining criterion of maximizing return on in-

vestment can be used as the objective function. This problem can then

be solved as a single criterion linear programming problem.

Another popular approach for solving multiple criteria

problems is that of goal programming. With this approach, the decision
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maker typically specifies weight ranges (either priority or pre-

emptive) for each of the criterion. Numerous goal programming

specializations of the standard simplex linear programming algorithm

have been developed for solving these problems.

A final approach, multicriteria programming, determines

* Ii the set of all nondominated (efficient, admissable, or Pareto optimal)

solutions to the problem. Loosely speaking, a solution is a non-

dominated solution if no other solution exists that is at least as

good in terms of every criterion, and even better for at least one

criterion.

In the single criterion case, enormous computational gains

have been made by specializing the general purpose linear programming

3 ialgorithms to take advantage of the special properties of network flow

problems. Specifically, many arithmetic operations have been re-

placed by more efficient logical operations. In addition, the basis

matrix and its inverse for many network flow problems can be repre-

sented as a simple graph structure (e.g., rooted tree). These graph

structures can be stored and efficiently accessed by a computer as a

set of linked lists.

Depending on the degree of complexity of the network problem

being considered, numerous specialized network solution algorithms

recently developed exhibit from one to three orders of magnitude im-

IIprovements in solution times over the more general purpose linear
programming algorithms. In view of this fact, this research effort
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sought to extend these advantages to network problems with multiple

criteria. Two approaches were studied: a network variant of the

multicriteria linear programming algorithm, and a network variant

of the surrogate criterion approach.

A network variant of the multicriteria linear programming

problem is presented'trn-Seet-ion 2.j The primal simplex multicriteria

algorithm first developed by Yu and Zeleny 114, 15, 16I is specialized

to handle the simple basis structure of the multicriteria uncapacitated

transshipment problem. Specifically, the basis tree representation

and updating techniques that have proven to be successful for single

criterion network flow problems are used to substantially reduce the

computational effort required for the ulticriteria simplex algorithm.

In Section2.1-the fundamental theoretical results for the

general multicriteria linear programming problem are presenteA -

brief review of the relevant aspects of the network basis structure ,

is given in Section 2.2. lhe specialized multicriteria primal simplex

algorithm for the uncapacitated transshipment problem is presented4ft- > .

Section 2.3, andoa small example problem is givenn Section 2.4.
2

network variant of the surrogate criterion linear program-

ming approach is presented in-Section 3) For sake of illustration,

the shortest path problem is used as the class of networks to be

solved. However,+he approach outlined in this sectior+,can be easily

extended to any of the other classes of network flow problems.

In this section an interactive solution procedure is described that

involves both the decision maker and the computer at each stage.
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2.1 MULTICRITERIA LINEAR PROGRAMMING

The multicriteria solution procedure developed by Yu and

Zeleny [ 14, 15, 16] is a generalization of the primal simplex algo-

rithm for single criterion linear programming problems. In order to

fully appreciate their generalization, some of the basic aspects of

single criterion linear programming should be reviewed first.

The standard form of the single criterion linear programming

problem is given by

Minimize cx

subject to:
Ax= b

(1)

x 0

where A is the m x n matrix of activity coefficients, b is the m

dimensional column vector of resource levels, c is the n dimensional

row vector of objective function coefficients, x is the n dimensional

column vector of decision variables, and 0 is an n dimensional column

vector of zeros.

Without loss of generality it will be assumed that the matrix

A has full row rank. A basis B is an m x m submatrix of A such that

B also has full row rank. By partitioning problem (1) with respect

to its basic and nonbasic components, the objective function may be

rewritten as:

Minimize 7b + (c - 7A)x (2)
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where N = CBB-1 is the m dimensional row vector of dual variables and

cB is the m dimensional subvector of c corresponding to the basic

variables. From (2) it can be seen that a basic feasible solution

to the problem is an optimal solution if

c - TA= > 0 (3)

The quantity ck - rrAk, where ck is the kth element of c and Ak is the

k t h column of A, is called the reduced cost of variable xk*

The standard form of the R-criteria linear programming

problem is given by

"Minimize" Cx

subject to:

Ax = b
(4)

x>0

where C is an R x n matrix of criteria function coefficients such that

th th
the r criterion is specified by the r row of C. In general, no

single solution can simultaneously minimize all R criteria, hence the

quotes around minimize. Instead, the objective of a multicriteria

linear programming problem is to determine the set of nondominated

solutions to the problem.

A feasible solution x is a nondominated solution to problem

(4) if no other solution x1 exists such that CxI = Cx° and CxI 0 Cx0 .

An important observation is that a feasible solution x° is a non-

dominated solution if and only if a vector A > 0 exists such that 
xo

is an optimal solution to the single criterion linear programing
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]" problem:

Minimize XCx

subject to:
Axfb

(5)x>0-- x=f 0

The vector X serves as a simple weighting function to reduce the R

criteria to a single weighted (surrogate) criterion.

If problem (4) is partitioned with respect to its basic

and nonbasic components, then an R x m matrix of "dual variables"

is given by

fl = CBB-
1

where CB is the R x m submatrix of C corresponding to the basic

variables.

Following along the lines of (3), a basis B yields a non-

dominated solution if a vector A > 0 exists such that

X(C - 1A) > 0 (6)

That is, B is a nondominated basis for problem (4) if it yields an

optimal basis to problem (5) for some vector of positive weights.

In [13, 16] it was shown that the set of all nondominated

bases for problem (4) is connected. This simply means that, given one

nondominated basis, the complete set can be obtained by exhaustively

examining all bases adjacent to the set of currently known nondominated

bases. An initial nondominated basis can be found by solving the

weighted linear programming problem (5) for ary specified vector

A > 0.
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It was also shown in [13, 16] that the nondominance of

each adjacent basis can be determined by repeatedly solving the

following nondominance subproblem

Maximize le

subject to: ke + (C - kA)y 0 (7)

e$O y$0

where 1 is the R-dimensional row vector of ones and Hk is the matrix

of dual variables associated with the adjacent basis obtained by re-

placing the appropriate column of B with Ak. If problem (7) has an

optimal objective function value of zero for a given adjacent basis,

then that basis is nondominated. Otherwise, it is a dominated basis

and does not need to be further considered.

The nondominance subproblem arises as the dual linear pro-

gramming problem of

Minimize X0

subject to: -(C-kA)= > 0

Xi > 1

Clearly, this problem is equivalent to the problem of finding a

vector X > 0 such that (6) holds.

The nondominance subproblem is relatively easy to solve

since an initial feasible basis, corresponding to the identity matrix,

is readily available. However, this approach suffers from the fact

that a nondominance subproblem must be solved for each of the n - m
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bases adjacent to each nondominated basis.

A seemingly more efficient procedure for determining the

nondominance of the adjacent bases was considered in [ii]. This

procedure makes use of the concept of effective constraints to

determine the nondominance of each adjacent basis without having to

physically pivot each nonbasic column into the basis.

If B is a nondominated basis for problem (4), then

A = {X > 0 1X(C - flA) _ 0}

is a nonempty polyhedral region over which B is an optimal basis for

the corresponding weighted single criterion linear programming problem

(5). Each nonbasic column of problem (4) generat, i constraint for

A of the form

X(Ck - k )  0

where Ck (Ak) is the kth column of C (A). Such a constraint is

called an effective constraint if Ck - lAk # 0 and a vector Xo E A

exists such that A (Ck - RAk) = 0. That is, a constraint is ef-

fective if it forms a boundary of A.

In [11] it was shown that an adjacent basis is a non-

dominated basis if and only if it corresponds to an effective con-

straint. This result eliminates the need to solve the nondominance

subproblem for each adjacent basis. However, a procedure is needed

for determining whether or not a constraint is effective.

In [i] it was shown that X(Ck - A) Z 0 is an effective

constraint if and only if there exists vectors u > 0 and v = 0 such

A _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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that

u - v(C- 11A) = 1(C - 1A) (8)

with uk = 0. That is, if nonnegative vectors exist such that (8)

holds and the kth component of u is zero, then the adjacent basis

obtained by replacing the appropriate column of B with Ak is non-

dominated.

2.2 BASIS STRUCTURE CHARACTERISTICS OF PURE NETWORK FLOW PROBLEMS

A brief review of the fundamental characteristics of pure

network flow problems is presented in this section. In the following

section these characteristics are combined with the results presented

in Section 2.1 to yield a specialized primal simplex algorithm for

the multicriteria uncapacitated transshipment problem.

Each of the n arcs of an uncapacitated transshipment problem

corresponds to a column of the constraint matrix A of problem (1).

Likewise, each of the m nodes corresponds to a row of A. If arc k

is directed from node i to node j then column k of A has a -1 co-
k k

efficient in row ik9 a +1 coefficient in row j k and zeros in the

other m - 2 rows.

When an uncapacitated transshipment problem is formulated

as (1), then c is an n dimensional row vector of objective function

coefficients or arc costs, b is an m dimensional column vector of net

demands, and x is an n dimensional column vector of arc flow variables.

Due to its special structure, the matrix A is referred to as a node-

arc incidence matrix. Since A is a unimodular matrix [7 ], every
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basic feasible solution to the uncapacitated transshipment problem is

integer if b is an integer vector.

Since the rank of A is m - 1 (assuming the network is con-

nected), one row of A can be deleted. A basis B consists of m - 1

linearly independent columns (arcs) of A. It is well-known that

every such basis can be represented as a rooted basis tree. All of

the standard simplex operations that normally require the basis or

basis inverse matrix cab be carried out as simple operations on the

basis tree.
-i

The determination of the dual variables 7T = c B B is

greatly simplified using the tree representation of the basis in-

verse. Specifically, the dual variables, or node potentials, can be

defined by a simple one pass, top to bottom, left to right traversal

of the rooted basis tree. Due to the special structure of the pure

network flow problem, the optimality condition (3) takes the simple

form:

ck + 7Tik - TJk = 0

for each arc k, where 7ik (7jk) is the node potential associated with

the origin (destination) node of arc k.

If ce + 7ie - 7Je < 0 for some e, then the arc is said to

be pivot eligible. Given such an entering arc, the standard primal

simplex minimum ratio test for determining the new basis can be

greatly streamlined. Specifically, the minimum ratio can be deter-

mined by simply examining the arcs on the unique basis equivalent path

in the basis tree from node ie to node j e The minimum ratio, and
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hence the leaving arc, is determined by identifying the smallest flow

on the subset of the arcs whose orientation is in the direction from

node je to node ie in the basis equivalent path. Once the leaving

arc r has been identified the change of basis (pivot) can be carried

out by updating the flows on the arcs in the basis equivalent path

and restructuring the basis tree to reflect the replacement of arc r

by arc e.

2.3 MULTICRITERIA PRIMAL SIMPLEX TRANSSHIPMENT ALGORITHM

The multicriteria primal simplex algorithm presented in

this section is a network specialization of the original algorithm of

Yu and Zeleny. Specifically, the algorithm has been specialized to

take advantage of the special basis structure of the uncapacitated

transshipment problem.

The multicriteria uncapacitated transshipment problem is

given by:

"Minimize" Cx

subject to:
Ax= b

(9)
x 0

where C is an R x n matrix of criteria function coefficients, A is an

m x n node-arc incidence matrix, b is an m dimensional column vector

of net demands, and x is an n dimensional column vector of arc flow

variables. Since the node-arc incidence matrix A is unimodular,

every basic feasible solution to (9) is integer if b is an integer

vector.
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Due to the special basis structure of pure network flow

problems, the matrix of "dual variables"

n1= GB71
B

can be treated as a s.mple generalization of the vector of node

potentials presented in Section 2.2. Specifically, each node i of

the R-criteria uncapacitated transshipment problem (9) has a R

dimensional column vector of "node potentials" associated with it.

These vectors of node potentials can be defined by a simple one pass,

top to bottom, left to right traversal of the rooted basis tree.

Due to the special structure of the multicriteria uncapacitated

transshipment problem, a given basic feasible solution is a non-

dominated solution if a vector X > 0 exists such that

X(Ck + 1ik - ITJk )  0

for every arc k, where Ck is the kth column of C and Hik (Hik) is

the vector of dual variables associated with the origin (destination)

node of arc k.

Given an entering arc e and a leaving arc r, the change

of basis can be carried out by augmenting the flow on arc e and

the arcs on its basis equivalent path, and restructuring the

basis tree to reflect the replacement of arc r by arc e. The

process of augmenting flow on the basis equivalent path is identi-

cal to that used for the single criterion network flow problem.

The restructuring of the basis tree, except for the updating of
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the vectors of node potentials, can also be done in the same ef-

ficient manner used for the single criterion problem. The updat-

F ing of the node potentials can be carried out as a straightforward

generalization of the single criterion approach.

Let e denote the entering arc and let L - Ce + Hie - Hie

be the vector of reduced costs associated with it. If arc r is

the leaving arc, then deleting it from the basis tree creates two

subtrees. Let N1 be the set of nodes in the subtree that contains

node j e The updated vectors of node potentials Hi are defined by

Hi , if i e N1
I = I H+ A, if i E N1

That is, it is only necessary to update the vectors of node po-

tentials associated with one of the subtrees. In addition, the

vector of node potentials for each node in the subtree is changed

by a constant amount. This updating process can be efficiently

carried out in one pass through the nodes N of the subtree.

For single criterion network flow problems, the node

potentials are used solely to determine the reduced costs of the

arcs for pivoting purposes. For multicriteria network flow prob-

lems, the node potentials are also used for solving nondominance

subproblems (7) or for determining effective constraints (8). Both

of these approaches require knowledge of the vector of reduced costs

C k - " Ak Ck + -ik Jk (10)
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for each arc k. The actual solution of (7) or (8) can be carried out

as before. However, since pivoting to an adjacent basis is so easy

for network problems, the apparent advantage of the effective con-

straint approach over the nondominance subproblem approach may have

disappeared. This is particularly true since the nondominance sub-

problem can be solved as a revised simplex problem using a R x R

basis matrix, whereas the effective constraint problem requires a

basis matrix that may be as large as (n - m) x (n - m). Clearly,

for problems where the number of criterion is small, or the number

of arcs is large, the difficulty of the effective constraint problem

is much greater than that of the nondominance subproblem.

At this point a specialization of the nondominance sub-

problem will be presented. First it should be noted that the non-

dominance subproblem (7) can be restated as:

Minimize gy

subject to: G <

Gy =0

' Y 0(11)

k k
where G = C -ITA, g iG, and R is the R x m matrix of node

potentials associated with the adjacent basis (tree) obtained by

replacing the appropriate leaving arc with nonbasic arc k. Actually,

in problem (11), it is only necessary to consider the columns of G

that have at least one negative coefficient. At the bare minimum,

this eliminates the m (zero) columns corresponding to the basis.
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Since each constraint in problem (11) has a zero right

hand side value, the problem either has an optimal objective func-

tion value of zero or is unbounded. If the optimal objective

function value is zero, then the adjacent basis being considered

is nondominated. Otherwise, the adjacent basis is dominated.

Problem (11) can be efficiently solved using the re-

vised primal simplex algorithm with an explicit R x R basis in-

verse matrix. Let D denote the basis matrix for the problem.

A readily available initial basis matrix is given by the identity

matrix corresponding to the slack variables. Using this initial

basis, the basis inverse is also the R x R identity matrix. The

vector of dual variables w associated with this initial basis is

simply the zero vector.

Problem (11) has an optimal solution of zero if

gk- 0

for each column K. If g - wG < 0 for some column c, then D is
c c

not an optimal basis and column c can be chosen as the pivot

column for a standard primal simplex pivot.

Given a pivot column c, if the vector D -G is nonposi-c

tive, then problem (11) has an unbounded solution and therefore

*the adjacent basis under consideration is dominated. Otherwise,

any row r corresponding to a positive coefficient of the vector

D71G can be chosen as the pivot row and the standard simplex pivot
c

can be carried out.
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Since the number of criteria is not generally very large,

the R x R basis inverse should probably be maintained in explicit

form for fastest implementation.

It should be noted that an easy check for nondominance

can be made before actually resorting to solving problem (11)

for the adjacent basis. The check is to examine the vector of re-

duced costs Gk for each nonbasic arc. Problem (11) has an un-

bounded solution if there exists a nonzero, nonpositive vector Gk.

2.4 EXAMPLE

A small six node and nine arc uncapacitated transshipment

problem with two criteria functions is solved in this section.

Figure 1 illustrates the network configuration of the problem.

FIGURE 1

EXAMPLE NETWO-K

21ZS
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Node 1 has a supply of five units and each of the other nodes has

a demand of one unit. These amounts are indicated in the tri-

angles attached to each node. The two criteria coefficients are

given in the boxes attached to each arc. The origin node (ik),

destination node (jk), first criterion coefficient (C ), and

2second criterion coefficient (Ck) for each of the nine arcs is

given in Table 1. This problem is actually a bicriteria shortest

path problem from node 1 to all other nodes.

The first step of the multicriteria simplex algorithm is

to determine an initial nondominated basic feasible solution to the

problem. This can be done by selecting any vector X > 0 and solving

the corresponding weighted single criterion uncapacitated trans-

shipment problem (5). For sake of illustration, equal weights

(i.e., X 1 A 1) were chosen for this problem. The resulting

initial nondominated basis tree is shown in Figure 2. The vectors

of node potentials are indicated beside the corresponding nodes.

The matrix of reduced costs C - RA is shown in Figure 3.

TABLE 1

ARC DATA

k 1 2 3 4 5 6 7 8 9

i 1 1 2 2 3 3 4 4 5
k

ik 2 3 4 3 4 5 6 5 6

3 26 2 2 1 -2 0 1 40

C 2 10 1 8 2 3 1 12 1 2
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FIGURE 2

FIRST NONDOMINATED BASIS TREE

1

(E )
[27]

FIGURE 3

FIRST REDUCED COST MATRIX

E021-1000043]
0-11300003 -12
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jThree bases adjacent to the nondominated one shown in
Figure 2 must be checked for nondominance. The adjacent basis

associated with arc 8 does not have to be considered since its

vector of reduced costs is nonnegative. The nondominance of the

adjacent bases corresponding to arcs 2, 3, and 9 can either be

checked by the nondominance subproblem or the effective constraint

approach. However, since the problem only has two criteria, the

nondominated region A can be plotted and the nondominance of the

adjacent bases determined by inspection. Figure 4 shows the non-

dominated region associated with the basis tree given in Figure 2.

The adjacent bases associated with arcs 2 and 3 are nondominated

since their reduced costs form effective constraints of A.

Figure 5 illustrates the nondominated basis tree that is

obtained if arc 5 is replaced by arc 3 in the initial nondominated

basis tree. Again, the vectors of node potentials are indicated

beside the corresponding nodes. Note that the node potential

vectors for nodes 4 and 6 changed by a constant amount (A = [-I )
while the other node potential vectors remained the same. The re-

duced cost matrix is shown in Figure 6, and Figure 7 shows the non-

dominated region associated with this basis. There is only one

effective constraint and it corresponds to the first nondominated

basis that was found, so no further examination needs to be made in

this direction.

The next step is to back up to the initial nondominated

solution (Figure 2) and introduce arc 2 into the basis. This yields
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IW FIGURE 4
FIRST NONDOMINATED REGION

IX2

37X' -12X
2 > o

21X' - 1X2 >0

XQ + 3X2 > 0
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FIGURE 5

SECOND NONDOMINATED BASIS TREE

00]

3I

121 [15o]

FIGURE 6

SECOND REDUCED COST MATRIX

0 E2100100 338]10 -11 0 0 -3 0 0 6 4
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FIGURE 7

SECOND NONDOMINATED REGION

38X' 15X2 > 0

21x1 
- 11X 2  0

-3X
2 0
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the third nondominated basis shown in Figure 8. The associated matrix

of reduced costs is given in Figure 9 and its nondominated region is

shown in Figure 10. There are two effective constraints for this

basis but only the one corresponding to arc 9 yields a nondominated

basis that has not already been encountered.

FIGURE 8

THIRD NONDOMINATED BASIS TREE

0I[13][0] 2 3 6

( 27

FIGURE 9

THIRD REDUCED COST MATRIX

0 -2 21 0 0 034 37]10 0 1421 0 0 04 312
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FIGURE 10

THIRD NONDOMINATED REGION

37X' -12X
2 > 0

-11 + 11X2 > 0

-22X' + 14X2  0

--ZZI

X1



27

Figure 11 shows the nondominated basis tree obtained by

replacing arc 7 by arc 9. The matrix of reduced costs is given

in Figure 12 and the nondominated region is illustrated in Figure

13. The only effective constraint corresponds to an already known

nondominated basis.

FIGURE 11

FOURTH NONDOMINATED BASIS TREE

FIGURE 12

FOURTH REDUCED COST ,MATRIX

[ O O -220 -21 0 0-7 4 0

00 4 210 0 12 3 0[°°6 [64]4 "
FIUR ,12 ,, o
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FIGURE 13

FOURTH NONDOMINATED REGION

-37X' + 12X2 >

-21X' + 11X' > 0

-22X' + 14X 0

IX
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All four nondominated basic solutions to this small ex-

ample problem have been determined. Any linear combination of ad-

jacent nondominated basic solutions is also a nondominated solu-

tion. However, for this small example problem, the only integer

nondominated solutions are the four basic solutions. This is true

for any multiobjective shortest path or assignment problem, but

it is not necessarily true for a more general transshipment problem.

3.1 SURROGATE CRITERION NETWORK METHOD

In this section, an interactive solution procedure is pre-

sented for solving shortest path problems with multiple criteria.

The procedure is based on the surrogate criterion approach. Each

iteration of the solution procedure involves both the decision maker

and the computer. Based on a set of weights assigned by the decision

maker for each criterion, the computer is used to solve a weighted

objective (surrogate criterion) shortest path problem. Any efficient

algorithm can be used for the optimization process. However, since

label-correcting shortest path algorithms can be re-started from an

earlier solution, it is believed that a simplex-based code such as

C5 [2 ] is the best choice for the optimizer.

After solving the surrogate criterion shortest path problem,

the decision maker is presented with the values of each criteria

function for the current solution. Then, depending upon his satis-

faction with these values, he either stops with a satisfactory solu-

tion, or modifies his criteria weights and returns control to the

optimizer.
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jA number of interactive systems such as this have been

developed for solving large-scale multicriteria problems [ 3, 8,

10, 12, 17]. The general belief is that the decision maker who

actively participates in the solution process gains valuable in-

sight into the actual problem being solved. Not only does this in-

sight help him direct the search by the computer for the best

compromise solution, but it also provides him with a better grasp

of the interacting characteristics of the problem.

A small six node and nine arc network with three criteria

functions is given in Figure 14. This example will be used to

demonstrate the analysis of a multicriteria shortest path problem.

Node 1 is the source node for this example. The length of each arc,

in terms of the three different criteria fun-tions, is indicated

in the boxes attached to the arc. For instance, the arc from node I

to node 2 has a length of 3 according to the first criterion, a

length of 10 for the second, and a length of 5 for the third. These

three criteria may be thought of as reflecting the cost, speed, and

comfort level associated with using the arc.

FIGURE 14

EXAMPLE NETWORK

r2=8
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Figures 15, 16, and 17 illustrate the shortest path

trees obtained by independently considering criterion one, two,

and three, respectively. That is, if criterion one is assigned a

weight of one and criteria two and three are assigned weights of

zero, then the shortest path tree shown in Figure 15 is obtained.

The vectors shown beside each node in these figures is the length

of the path from the source to the node in terms of the three

criteria. For instance, in Figure 15 the length of the path from

the source to node 5 is 3 in terms of the first criterion, 13 for

the second, and 7 for the third.

FIGURE 15

CRITERION 1 - SHORTEST PATH TREE
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FIGURE 16

CRITERION 2 - SHORTEST PATH TREE
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FIGURE 17

CRITERION 3 -SHORTEST PATH TREE
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Figures 15 and 16 illustrate the underlying conflict

between the first two criteria. That is, the best solution for

criterion one (Figure 15) is very poor for criterion two, and

similarly, the best solution for criterion two (Figure 16) is

very poor for criterion one.

Multiple conflicting goals, as illustrated by this ex-

ample, are quite common in practice. Their occurrance calls for

a compromise solution. That is, a solution to the problem may

not be best in terms of any one criterion, but should be accept-

able in terms of all criteria. Such a compromise solution, for

this small example, is illustrated in Figure 18. This solution

was obtained by simultaneously considering all three criterion.

Specifically, the first criterion was assigned a weight of 10,

the second a weight of 10, and the third a weight of 1. Although

the solution in Figure 18 is not the best in terms of any single

criterion, it is a valid compromise solution to the problem.

3.2 MULTSP: AN INTERACTIVE SOLUTION PROGRAM

A simple in-core, interactive multicriteria shortest

path code, MULTSP, was developed in order to investigate the solu-

tion procedure suggested in Section 3.1. This code uses a specialized

version of the C5 label-correcting code [2 ] to solve the individual

surrogate criterion shortest path problems. A re-start capability

was added to the basic C5 code in order to capitalize on the fact

that the pth and (p + 1)s t surrogate criterion shortest path problems

are generally very similar.
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IFIGURE 18

COMPROMISE SHORTEST PATH TREE
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TABLE 2

RE-START IMPACT

SCRITEURA 1.cHTs S
PROBLEM ITERATIONS UQUIDI ITERATIONS REOUIRED
NUMBER I1 3 uS ING RE-sTART, NOT US: NG RE-START

S .210 10

1 ,) 1 0 33 211

3 0 0 1 100 214

4 1 1 1 23 208

5 1 1 5 16 206

6 1 5 S 16 208

TOTAL NUMBER OF ITERATIONS 448 1257

Table 2 presents some test results using MULTSP on a 100

node, 1000 arc, 3 criteria shortest path network problem. This

table indicates the computational advantage of using a label-

correcting code with the re-start capability. Specifically, for

this example, the re-start capability reduced the total number of

iterations required to determine the three single criterion optimal

solutions and three compromise solutions from 1257 to 448. As in-

dicated in the table, the reduction in the number of iterations is

most pronounced as "fine-tuning" of the compromise solution is

carried out.

Table 3 provides the test results for a 500 node, 2500 arc,

3 criteria shortest path problem. Determining the first solution

required 846 iterations. By using the re-start capability of MULTSP,

each of the next thirteen solutions only required an average of 44

additional iterations. It is interesting to note that determining
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TABLE 3

REQUIRED ITERATIONS

CRITERIA WEIGHTS

PROBLEM ITERATIONS
NUMBER 1 2 3 REQUIRED

1 1 0 0 846
2 10 1 0 14
3 5 1 0 14
4 1 1 0 90
5 1 5 0 95
6 1 10 0 24
7 0 1 0 45
8 0 10 1 58.
9 0 5 1 29
10 0 1 1 98
11 0 1 5 73
12 0 1 10 10

13 0 0 1 9
14 1 1 1 74

TOTAL NUMBER OF ITERATIONS 1479

all fourteen solutions required less than .18 c.p.u. seconds on

The University of Texas' CDC 6600 (MNF compiler). Clearly, when a

code can solve problems as large as this one so rapidly, the decision

maker faced with a multicriteria planning problem has a valuable

tool in his arsenal.
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